比特币共识机制是什么具体解答和比特币共识机制是什么意思细致分析
老币网拥有多年的区块链服务经验,为用户提供专业的服务信息,接下来介绍比特币共识机制是什么,以及比特币共识机制是什么意思,选择老币网可以为您随时随地解决玩币中所遇到的各种问题,让你不再为职称评级繁琐事务而烦恼。
eth挖矿是什么原理
ETH通过挖矿产生,平均大概每13秒产生2个块,挖矿的时候,矿工使用计算机去计算一道函数计算题的答案,直到有矿工计算到正确答案即完成区块的打包信息,而作为第一个计算出来的矿工将会得到2枚ETH的奖励。
如果矿工A率先算出正确的答案,那么矿工A将获得以太币作为奖励,并在全网广播告诉所有矿工“我已经把答案算出来了”并让所有在答题的矿工们进行验证并更新正确答案。如果矿工B算出正确答案,那么其他矿工将会停止当前的解题过程,记录正确答案,并开始做下一道题,直到算出正确答案,并一直重复此过程。
矿工角色
矿工在这个游戏中很难作弊。他们是没法伪装工作又得出正确答案。这就是为什么这个解题的过程被称为“工作量证明”(POW)。
解题的过程大约每12-15秒,矿工就会挖出2个区块。如果矿工挖矿的速度过快或者过慢,算法会自动调整题目的难度,把出块速度保持在13秒左右。
矿工获取这些ETH币是有随机性的,挖矿的收益取决于投入的算力,就相当你的计算机越多,你答题的正确的概率也就越高,更容易获得区块奖励。
五分钟了解共识机制
五分钟了解共识机制
什么是共识机制?
“共识机制是区块链的灵魂。”这是业内经常能听到的一句话,共识机制在区块链中的地位可想而知。那么到底什么是共识机制呢?我们不妨从拜占庭将军问题说起。
拜占庭位于如今的土耳其的伊斯坦布尔,是东罗马帝国的首都。由于当时拜占庭罗马帝国国土辽阔,为了防御目的,每个军队都分隔很远,将军与将军之间只能靠信差传消息。在战争的时候,拜占庭军队内所有将军和副官必须达成一致的共识,决定是否有赢的机会才去攻打敌人的阵营。但是,在军队内有可能存有叛徒和敌军的间谍,左右将军们的决定又扰乱整体军队的秩序。在进行共识时,结果并不代表大多数人的意见。这时候,在已知有成员谋反的情况下,其余忠诚的将军在不受叛徒的影响下如何达成一致的协议,拜占庭问题就此形成。
拜占庭将军问题是一个协议问题,拜占庭帝国军队的将军们必须全体一致的决定是否攻击某一支敌军。问题是这些将军在地理上是分隔开来的,并且将军中存在叛徒。叛徒可以任意行动以达到以下目标:欺骗某些将军采取进攻行动;促成一个不是所有将军都同意的决定,如当将军们不希望进攻时促成进攻行动;或者迷惑某些将军,使他们无法做出决定。如果叛徒达到了这些目的之一,则任何攻击行动的结果都是注定要失败的,只有完全达成一致的努力才能获得胜利。
而这个问题该如何解决?中本聪的理念给出了一个比较好的答案:不能让所有人都有资格发信息,而是给发信息设置了一个条件:“工作量”,将军们同时做一道计算题,谁先算完,谁才能获得给其他小国发信息的资格。而其他小国在收到信息后,必须采用加密技术进行签字盖戳,以确认身份。然后再继续做题,做对题的再继续发消息……对这种先后顺序达成共识的算法,就是共识机制。
共识机制的作用
区块链作为一种按时间顺序存储数据的数据结构,可支持不同的共识机制。在区块链上,每个人都会有一份记录链上所有交易的账本,链上产生一笔新的交易时,每个人接收到这个信息的时间是不一样的,有些想要干坏事的人就有可能在这时发布一些错误的信息,这时就需要一个人把所有人接收到的信息进行验证,最后公布最正确的信息。
共识机制是区块链技术的重要组件。它就像一本法典,维系着区块链世界的正常运转,使得区块链技术自带改善世界的光芒,也是让区块链得以被全世界逐步接受和认可的最大幕后功臣,它让互联网、陌生人之间,在没有第三方作为信用背书的情况下发生的一切交易变成可能,它赋予了机械的代码以人性和温度。
共识机制的类别
目前的共识机制主要有POW、POS、DPOS、PBFT、dBFT、Pool验证池。
POW,就是人们熟悉的比特币挖矿,通过计算出一个满足规则的随机数,即获得本次记账权,发出本轮需要记录的数据,全网其它节点验证后一起存储。可实现完全去中心化,节点自由进出。干的越多,收的越多。
POS,权益证明,POW的一种升级共识机制,根据每个节点所占代币的比例和时间,以此等比例的挖矿难度,从而加快找随机数的速度。持有越多,获得越多
DPOS,股份授权证明机制,类似于董事会投票,持币者投出一定数量的节点,代理他们进行验证和记账。
PBFT ,Practical Byzantine Fault Tolerance,实用拜占庭容错算法,是一种状态机副本复制算法,即服务作为状态机进行建模,状态机在分布式系统的不同节点进行副本复制,每个状态机的副本都保存了服务的状态,同时也实现了服务的操作。
dBFT,delegated BFT 授权拜占庭容错算法,由权益来选出记账人,然后记账人之间通过拜占庭容错算法来达成共识。
Pool验证池,基于传统的分布式一致性技术建立,并辅之以数据验证机制,是目前区块链中广泛使用的一种共识机制。Pool验证池不需要依赖代币就可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础之上,可以实现秒级共识验证,更适合有多方参与的多中心商业模式。
现有共识机制存在问题
目前现有的共识机制都不算完美,在一些实际应用场景弊端很多。
A、计算能力浪费
在工作量证明机制POW中,猜数字最快的通常是电脑计算能力强的。超强的计算能级仅用来猜数字,实在是浪费。
B、权益向顶层集中
在权益证明机制POS中,token的余额越多的人获得公示信息的概率越高,公示人会得到一定的token作为奖励,如此持有token多的人会越来越多,少的人越来越少。
C、作恶成本低下
在靠算力与权益的的多少来获得公示信息的权利的模式当中,当算力和权益向少数人集中之后,这些少数人如果想要做一些违反规则的事情是轻而易举的;在PBFT中,由所有人投票,如果一个没有任何token余额的人想要捣乱,那他几乎是完全没有利益损失。
D、对于真正的去中心化构成威胁
在工作量证明机制中,计算能力越强,获得记录权利的概率就越高。如果有人把很多人集中在一起来猜数字,把好多电脑的算力加在一起来用,那这些抱团的人就会更容易获得公示信息的权利,发展到最后可能公示权就直接掌握在这些人手里。
在权益证明机制POS中,权益越大的人获得记录权利的概率越高,而记录的人就会有奖励token ,这样一来这些人就会越来越富有,贫富差距就会越来越大。持有token少的人几乎都没有话语权了。权利掌握在少数人手中,这有违区块链去中心化理念。
区块链常见的三大共识机制
区块链是建立在P2P网络,由节点参与的分布式账本系统,最大的特点是“去中心化”。也就是说在区块链系统中,用户与用户之间、用户与机构之间、机构与机构之间,无需建立彼此之间的信任,只需依靠区块链协议系统就能实现交易。
可是,要如何保证账本的准确性,权威性,以及可靠性?区块链网络上的节点为什么要参与记账?节点如果造假怎么办?如何防止账本被篡改?如何保证节点间的数据一致性?……这些都是区块链在建立“去中心化”交易时需要解决的问题,由此产生了共识机制。
所谓“共识机制”,就是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;当出现意见不一致时,在没有中心控制的情况下,若干个节点参与决策达成共识,即在互相没有信任基础的个体之间如何建立信任关系。
区块链技术正是运用一套基于共识的数学算法,在机器之间建立“信任”网络,从而通过技术背书而非中心化信用机构来进行全新的信用创造。
不同的区块链种类需要不同的共识算法来确保区块链上最后的区块能够在任何时候都反应出全网的状态。
目前为止,区块链共识机制主要有以下几种:POW工作量证明、POS股权证明、DPOS授权股权证明、Paxos、PBFT(实用拜占庭容错算法)、dBFT、DAG(有向无环图)
接下来我们主要说说常见的POW、POS、DPOS共识机制的原理及应用场景
概念:
工作量证明机制(Proof of work ),最早是一个经济学名词,指系统为达到某一目标而设置的度量方法。简单理解就是一份证明,用来确认你做过一定量的工作,通过对工作的结果进行认证来证明完成了相应的工作量。
工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出,并通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。
应用:
POW最著名的应用当属比特币。在比特币网络中,在Block的生成过程中,矿工需要解决复杂的密码数学难题,寻找到一个符合要求的Block Hash由N个前导零构成,零的个数取决于网络的难度值。这期间需要经过大量尝试计算(工作量),计算时间取决于机器的哈希运算速度。
而寻找合理hash是一个概率事件,当节点拥有占全网n%的算力时,该节点即有n/100的概率找到Block Hash。在节点成功找到满足的Hash值之后,会马上对全网进行广播打包区块,网络的节点收到广播打包区块,会立刻对其进行验证。
如果验证通过,则表明已经有节点成功解迷,自己就不再竞争当前区块,而是选择接受这个区块,记录到自己的账本中,然后进行下一个区块的竞争猜谜。网络中只有最快解谜的区块,才会添加的账本中,其他的节点进行复制,以此保证了整个账本的唯一性。
假如节点有任何的作弊行为,都会导致网络的节点验证不通过,直接丢弃其打包的区块,这个区块就无法记录到总账本中,作弊的节点耗费的成本就白费了,因此在巨大的挖矿成本下,也使得矿工自觉自愿的遵守比特币系统的共识协议,也就确保了整个系统的安全。
优缺点
优点:结果能被快速验证,系统承担的节点量大,作恶成本高进而保证矿工的自觉遵守性。
缺点:需要消耗大量的算法,达成共识的周期较长
概念:
权益证明机制(Proof of Stake),要求证明人提供一定数量加密货币的所有权。
权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。
应用:
2012年,化名Sunny King的网友推出了Peercoin(点点币),是权益证明机制在加密电子货币中的首次应用。PPC最大创新是其采矿方式混合了POW及POS两种方式,采用工作量证明机制发行新币,采用权益证明机制维护网络安全。
为了实现POS,Sunny King借鉴于中本聪的Coinbase,专门设计了一种特殊类型交易,叫Coinstake。
上图为Coinstake工作原理,其中币龄指的是货币的持有时间段,假如你拥有10个币,并且持有10天,那你就收集到了100天的币龄。如果你使用了这10个币,币龄被消耗(销毁)了。
优缺点:
优点:缩短达成共识所需的时间,比工作量证明更加节约能源。
缺点:本质上仍然需要网络中的节点进行挖矿运算,转账真实性较难保证
概念:
授权股权证明机制(Delegated Proof of Stake),与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。
授权股权证明在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。
同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。
应用:
比特股(Bitshare)是一类采用DPOS机制的密码货币。通过引入了见证人这个概念,见证人可以生成区块,每一个持有比特股的人都可以投票选举见证人。得到总同意票数中的前N个(N通常定义为101)候选者可以当选为见证人,当选见证人的个数(N)需满足:至少一半的参与投票者相信N已经充分地去中心化。
见证人的候选名单每个维护周期(1天)更新一次。见证人然后随机排列,每个见证人按序有2秒的权限时间生成区块,若见证人在给定的时间片不能生成区块,区块生成权限交给下一个时间片对应的见证人。DPoS的这种设计使得区块的生成更为快速,也更加节能。
DPOS充分利用了持股人的投票,以公平民主的方式达成共识,他们投票选出的N个见证人,可以视为N个矿池,而这N个矿池彼此的权利是完全相等的。持股人可以随时通过投票更换这些见证人(矿池),只要他们提供的算力不稳定,计算机宕机,或者试图利用手中的权力作恶。
优缺点:
优点:缩小参与验证和记账节点的数量,从而达到秒级的共识验证
缺点:中心程度较弱,安全性相比POW较弱,同时节点代理是人为选出的,公平性相比POS较低,同时整个共识机制还是依赖于代币的增发来维持代理节点的稳定性。
比特币之挖矿与共识(二)
比特币共识机制的第三步是通过网络中的每个节点独立校验每个新区块。当新区块在网络中传播时,每一个节点在将它 转发到其节点之前,会进行一系列的测试去验证它。这确保了只有有效的区块会在网络中传播。
独立校验还确保了诚实 的矿工生成的区块可以被纳入到区块链中,从而获得奖励。行为不诚实的矿工所产生的区块将被拒绝,这不但使他们失 去了奖励,而且也浪费了本来可以去寻找工作量证明解的机会,因而导致其电费亏损。
当一个节点接收到一个新的区块,它将对照一个长长的标准清单对该区块进行验证,若没有通过验证,这个区块将被拒 绝。这些标准可以在比特币核心客户端的CheckBlock函数和CheckBlockHead函数中获得
它包括:
为什么矿工不为他们自己记录一笔交易去获得数以千计的比特币?
这 是因为每一个节点根据相同的规则对区块进行校验。一个无效的coinbase交易将使整个区块无效,这将导致该区块被拒 绝,因此,该交易就不会成为总账的一部分。矿工们必须构建一个完美的区块,基于所有节点共享的规则,并且根据正 确工作量证明的解决方案进行挖矿,他们要花费大量的电力挖矿才能做到这一点。如果他们作弊,所有的电力和努力都 会浪费。这就是为什么独立校验是去中心化共识的重要组成部分。
比特币去中心化的共识机制的最后一步是将区块集合至有最大工作量证明的链中。一旦一个节点验证了一个新的区块, 它将尝试将新的区块连接到到现存的区块链,将它们组装起来。
节点维护三种区块:第一种是连接到主链上的,第二种是从主链上产生分支的(备用链),最后一种是在已知链中没有 找到已知父区块的。在验证过程中,一旦发现有不符合标准的地方,验证就会失败,这样区块会被节点拒绝,所以也不 会加入到任何一条链中。
任何时候,主链都是累计了最多难度的区块链。在一般情况下,主链也是包含最多区块的那个链,除非有两个等长的链 并且其中一个有更多的工作量证明。主链也会有一些分支,这些分支中的区块与主链上的区块互为“兄弟”区块。这些区 块是有效的,但不是主链的一部分。 保留这些分支的目的是如果在未来的某个时刻它们中的一个延长了并在难度值上超 过了主链,那么后续的区块就会引用它们。
如果节点收到了一个有效的区块,而在现有的区块链中却未找到它的父区块,那么这个区块被认为是“孤块”。孤块会被 保存在孤块池中,直到它们的父区块被节点收到。一旦收到了父区块并且将其连接到现有区块链上,节点就会将孤块从 孤块池中取出,并且连接到它的父区块,让它作为区块链的一部分。当两个区块在很短的时间间隔内被挖出来,节点有 可能会以相反的顺序接收到它们,这个时候孤块现象就会出现。
选择了最大难度的区块链后,所有的节点最终在全网范围内达成共识。随着更多的工作量证明被添加到链中,链的暂时性差异最终会得到解决。挖矿节点通过“投票”来选择它们想要延长的区块链,当它们挖出一个新块并且延长了一个链, 新块本身就代表它们的投票。
因为区块链是去中心化的数据结构,所以不同副本之间不能总是保持一致。区块有可能在不同时间到达不同节点,导致节点有不同的区块链全貌。
解决的办法是,每一个节点总是选择并尝试延长代表累计了最大工作量证明的区块链,也就 是最长的或最大累计工作的链(greatest cumulative work chain)。节点通过累加链上的每个区块的工作量,得到建立这个链所要付出的工作量证明的总量。只要所有的节点选择最长累计工作的区块链,整个比特币网络最终会收敛到一致的状态。分叉即在不同区块链间发生的临时差异,当更多的区块添加到了某个分叉中,这个问题便会迎刃而解。
提示由于全球网络中的传输延迟,本节中描述的区块链分叉自动会发生。
然而,倒三角形的区块不会被丢弃。它被链接到星形链的父区块,并形成备用链。虽然节点X认为自己已经正确选择了获胜链,但是它还会保存“丢失”链,使得“丢失”链如果可能最终“获胜”,它还具有重新打包的所需的信息。
这是一个链的重新共识,因为这些节点被迫修改他们对块链的立场,把自己纳入更长的链。任何从事延伸星形-倒三角形的矿工现在都将停止这项工作,因为他们的候选人是“孤儿”,因为他们的父母“倒三角形”不再是最长的连锁。
“倒三角形”内的交易重新插入到内存池中用来包含在下一个块中,因为它们所在的块不再位于主链中。
整个网络重新回到单一链状态,星形-三角形-菱形,“菱形”成为链中的最后一个块。所有矿工立即开始研究以“菱形”为父区块的候选块,以扩展这条星形-三角形-菱形链。
从理论上来说,两个区块的分叉是有可能的,这种情况发生在因先前分叉而相互对立起来的矿工,又几乎同时发现了两个不同区块的解。
然而,这种情况发生的几率是很低的。单区块分叉每周都会发生,而双块分叉则非常罕见。比特币将区块间隔设计为10分钟,是在更快速的交易确认和更低的分叉概率间作出的妥协。更短的区块产生间隔会让交易清算更快地完成,也会导致更加频繁地区块链分叉。与之相对地,更长的间隔会减少分叉数量,却会导致更长的清算时间。
2012年以来,比特币挖矿发展出一个解决区块头基本结构限制的方案。在比特币的早期,矿工可以通过遍历随机数 (Nonce)获得符合要求的hash来挖出一个块。
难度增长后,矿工经常在尝试了40亿个值后仍然没有出块。然而,这很容 易通过读取块的时间戳并计算经过的时间来解决。因为时间戳是区块头的一部分,它的变化可以让矿工用不同的随机值 再次遍历。当挖矿硬件的速度达到了4GH/秒,这种方法变得越来越困难,因为随机数的取值在一秒内就被用尽了。
当出现ASIC矿机并很快达到了TH/秒的hash速率后,挖矿软件为了找到有效的块, 需要更多的空间来储存nonce值 。可以把时间戳延后一点,但将来如果把它移动得太远,会导致区块变为无效。
区块头需要信息来源的一个新的“变革”。解决方案是使用coinbase交易作为额外的随机值来源,因为coinbase脚本可以储存2-100字节的数据,矿工们开始使用这个空间作为额外随机值的来源,允许他们去探索一个大得多的区块头值范围来找到有效的块。这个coinbase交易包含在merkle树中,这意味着任何coinbase脚本的变化将导致Merkle根的变化。
8个字节的额外随机数,加上4个字节的“标准”随机数,允许矿工每秒尝试2^96(8后面跟28个零)种可能性而无需修改时间戳。如果未来矿工穿过了以上所有的可能性,他们还可以通过修改时间戳来解决。同样,coinbase脚本中也有更多额外的空间可以为将来随机数的扩展做准备。
比特币的共识机制指的是,被矿工(或矿池)试图使用自己的算力实行欺骗或破坏的难度很大,至少理论上是这样。就像我们前面讲的,比特币的共识机制依赖于这样一个前提,那就是绝大多数的矿工,出于自己利益最大化的考虑,都会 通过诚实地挖矿来维持整个比特币系统。然而,当一个或者一群拥有了整个系统中大量算力的矿工出现之后,他们就可以通过攻击比特币的共识机制来达到破坏比特币网络的安全性和可靠性的目的。
值得注意的是,共识攻击只能影响整个区块链未来的共识,或者说,最多能影响不久的过去几个区块的共识(最多影响过去10个块)。而且随着时间的推移,整个比特币块链被篡改的可能性越来越低。
理论上,一个区块链分叉可以变得很长,但实际上,要想实现一个非常长的区块链分叉需要的算力非常非常大,随着整个比特币区块链逐渐增长,过去的区块基本可以认为是无法被分叉篡改的。
同时,共识攻击也不会影响用户的私钥以及加密算法(ECDSA)。
共识攻击也 不能从其他的钱包那里偷到比特币、不签名地支付比特币、重新分配比特币、改变过去的交易或者改变比特币持有纪录。共识攻击能够造成的唯一影响是影响最近的区块(最多10个)并且通过拒绝服务来影响未来区块的生成。
共识攻击的一个典型场景就是“51%攻击”。想象这么一个场景,一群矿工控制了整个比特币网络51%的算力,他们联合起来打算攻击整个比特币系统。由于这群矿工可以生成绝大多数的块,他们就可以通过故意制造块链分叉来实现“双重支 付”或者通过拒绝服务的方式来阻止特定的交易或者攻击特定的钱包地址。
区块链分叉/双重支付攻击指的是攻击者通过 不承认最近的某个交易,并在这个交易之前重构新的块,从而生成新的分叉,继而实现双重支付。有了充足算力的保证,一个攻击者可以一次性篡改最近的6个或者更多的区块,从而使得这些区块包含的本应无法篡改的交易消失。
值得注意的是,双重支付只能在攻击者拥有的钱包所发生的交易上进行,因为只有钱包的拥有者才能生成一个合法的签名用于双重支付交易。攻击者在自己的交易上进行双重支付攻击,如果可以通过使交易无效而实现对于不可逆转的购买行为不予付款, 这种攻击就是有利可图的。
攻击者Mallory在Carol的画廊买了描绘伟大的中本聪的三联组画(The Great Fire),Mallory通过转账价值25万美金的比特币 与Carol进行交易。在等到一个而不是六个交易确认之后,Carol放心地将这幅组画包好,交给了Mallory。这时,Mallory 的一个同伙,一个拥有大量算力的矿池的人Paul,在这笔交易写进区块链的时候,开始了51%攻击。
首先,Paul利用自己矿池的算力重新计算包含这笔交易的块,并且在新块里将原来的交易替换成了另外一笔交易(比如直接转给了Mallory 的另一个钱包而不是Carol的),从而实现了“双重支付”。这笔“双重支付”交易使用了跟原有交易一致的UTXO,但收款人被替换成了Mallory的钱包地址。
然后,Paul利用矿池在伪造的块的基础上,又计算出一个更新的块,这样,包含这 笔“双重支付”交易的块链比原有的块链高出了一个块。到此,高度更高的分叉区块链取代了原有的区块链,“双重支付”交 易取代了原来给Carol的交易,Carol既没有收到价值25万美金的比特币,原本拥有的三幅价值连城的画也被Mallory白白 拿走了。
在整个过程中,Paul矿池里的其他矿工可能自始至终都没有觉察到这笔“双重支付”交易有什么异样,因为挖矿程序都是自动在运行,并且不会时时监控每一个区块中的每一笔交易。
为了避免这类攻击,售卖大宗商品的商家应该在交易得到全网的6个确认之后再交付商品。或者,商家应该使用第三方 的多方签名的账户进行交易,并且也要等到交易账户获得全网多个确认之后再交付商品。一条交易的确认数越多,越难 被攻击者通过51%攻击篡改。
对于大宗商品的交易,即使在付款24小时之后再发货,对买卖双方来说使用比特币支付也 是方便并且有效率的。而24小时之后,这笔交易的全网确认数将达到至少144个(能有效降低被51%攻击的可能性)。
需要注意的是,51%攻击并不是像它的命名里说的那样,攻击者需要至少51%的算力才能发起,实际上,即使其拥有不 到51%的系统算力,依然可以尝试发起这种攻击。之所以命名为51%攻击,只是因为在攻击者的算力达到51%这个阈值 的时候,其发起的攻击尝试几乎肯定会成功。
本质上来看,共识攻击,就像是系统中所有矿工的算力被分成了两组,一 组为诚实算力,一组为攻击者算力,两组人都在争先恐后地计算块链上的新块,只是攻击者算力算出来的是精心构造 的、包含或者剔除了某些交易的块。因此,攻击者拥有的算力越少,在这场决逐中获胜的可能性就越小。
从另一个角度 讲,一个攻击者拥有的算力越多,其故意创造的分叉块链就可能越长,可能被篡改的最近的块或者或者受其控制的未来 的块就会越多。一些安全研究组织利用统计模型得出的结论是,算力达到全网的30%就足以发动51%攻击了。全网算力的急剧增长已经使得比特币系统不再可能被某一个矿工攻击,因为一个矿工已经不可能占据全网哪怕的1%算 力。
待补充
待补充
比特币共识机制是什么的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于比特币共识机制是什么意思、比特币共识机制是什么的信息别忘了在本站进行查找喔。